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Abstract

The typical task of unsupervised learning is to organize data,
for example into clusters, typically disjoint clusters (eg. the
K-means algorithm). One would expect (for example) a clus-
tering of books into topics to present overlapping clusters.
The situation is even more so in social networks, a source of
ever increasing data. Finding the groups or communities in
social networks based on interactions between individuals (a
measure of similarity) is an unsupervised learning task; and,
groups overlap — an individual can be a chess player and a
violin player, in which case he would interact with members
of both these groups.

The problem we address is not that of finding the overlapping
clusters, but otomparingtwo sets of overlapping clusters.
Such a task is the basis for comparing two different cluster-
ings, which is important for comparing algorithms with each
other or with a ground truth. From the social network point
of view, we are particularly interested in quantifying social
group evolution — how much the social group structure of a
social network changed — by comparing the set of groups at
consecutive time intervals.

There is significant prior work on comparing sets of disjoint
clusters (partitions). When overlap is allowed, the problem
becomes considerably more complex owing to the possibil-
ity of degeneracies, which we illustrate through examples.
We describe three novel definitions of the distance between
collections of potentially overlapping sets, and present algo-
rithms for computing those distances. We test our algorithms
on diverse data sets: collections composed from social groups
in Twitter, Blogosphere and Enron Email data.

Introduction

A generic task in unsupervised learning is to organize data
into clusters. In the online world of social interactionse t

Our motivation comes from social networks, which are a
source of abundant data (see Figure 1). Figure 1 shows ex-
ample social networks at two consecutive time periods; the
networks have been clustered into communities. The task
of clustering data into overlapping groups is indeed a chal-
lenging one, which is far from solved; however, many ap-
proaches to solving this problem exist (Baumes, Goldberg,
and Magdon-Ismail 2005; Palla et al. 2005; Newman 2005;
Nepusz et al. 2008; Gregory 2008).

It is not our goal to address this problem, and indeed,
we take as “solved”, the task of identifying the overlapping
communities. So, for example, the groups identified in Fig. 1
are given.

We address an auxiliary problem. In dynamic social net-
works (eg. Figure 1), which shows the behavior of the Ira-
nian Blogosphere, it is important to be able to measure the
rate of change of groups over time and to quantify the so-
ciety evolution in general. As can be seen in these exam-
ples, some of the groups grow rapidly over the period of
one year, new groups appear, while there can also be groups
which merge (eg. in 2008 the groups “twelver” and “re-
ligious youth” evolve into the group “CiberShia” in 2009
(Kelly and Etling 2008)). So, by how much has the com-
munity structure changed through this evolution? To answer
this question, we need to be able to measure the distance be-
tween sets of overlapping sets. While our motivation lies in
quantifying the rate of change in community structure, the
task of comparing two sets of clusters has numerous appli-
cations, the most obvious being to compare the results of a
clustering algorithm to a ground truth clustering, or to eom
pare two different clustering algorithms.

When it comes to partitions (clusterings into disjoint
clusters), numerous approaches exist, both for comparing

examples are many: organize books into topics based on harg partitions and soft or fuzzy partitions. These meth-
similarities between books (for example two books are sim- 4qs can be applied in a variety of settings including to sub-
ilar if the same person read or purchased both); arrange the space clusterings, partial clusterings and hierarchica-c
members of a social network (eg. Twitter or the LiveJournal terings, see for example (Denoeud and Guenoche 2006;
blogosphere) into communities based on who interacts with Zhou, Li, and Zha 2005; Meila and Patrikainen 2006).
whom. Such a categorization of the data should ideally re- o it 1ation is considerably more complicated when
1%“'? in overlapping clusters (it "; p%ssl|ble to haveha S®ENC  Gealing with clusterings obverlappingclusters. Lets first
iction romance, or a person who belongs to a chess group yefine the problem more concretely. The general goal is to
and a religious organization, etc.). measure the distance between two sets of clusterslug:
tering is a set of clusters. The clusters in a clustering may
overlap and need not be a cover.
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Iranian Blogosphere 2008

Iranian Blogosphere 2009

Figure 1: Evolution of part of the Iranian Blogosphere over period of 2008 and 2009. Note: each dot is a Blog, the size of
the dot represents the number of other blogs that link toriteasure of its popularity. The position of each dot is a fiomodf
its links with its neighbors (same topic Blogs tend to gatogether and form “clusters”).

LetC, = {Sl, So,.. ., Sn} andCs = {Si 557 ceey S;n}
be two clusterings of size andm respectively, where);
and S;. are the individual clusters; we assume that a clus-
ter does not contain duplicates. The goal is to compute
d(C1, Cs), the distance, between the clusteridgsandCs.
The algorithm should be efficient, and the distance should
reflect the “intuitive” distance between the cluster stuues
thatCy; andCs represent. The crux of the difficulty is illus-
trated by the example in Figure 2.

D

1,2,3,4,5,6,7,8,9,10

Figure 2: Twooverlappingclusterings of the same data: on
the left, one cluster with 11 members; on the right, 2 clster
with 10 members each.

On the right, there is essentially one big cluster,
{1,2,3,4,5,6,7,8,9} (the intersection) and the cluster-

solve a weighted bipartite matching problem to assign the
clusters in the first clustering to clusters in the second-clu
tering (without loss of generality, we can assume the two
clusterings are of the same size by adding empty clusters to
the smaller clustering). These problems can be solved by
a number of approaches such as: thengarianalgorithm
(Munkers 1957), thélax-Flowapproach or by formulating

a Linear Programming problem. All of these approaches try
to “convert” one clustering into the other by finding the low-
est cost matching, and are reasonably efficient (cubic in the
clustering sizes). Unfortunately, all of the algorithmsmme
tioned above do not account for the potential overlap be-
tween the groups and thus are not suited well to work with
clusterings found in social networks.

This naive approach works quite well for partitions, but
if we try to apply such a naive approach to the example in
Fig. 2 we run into a problem. First we need to add an empty
cluster to the left clustering. Then, to convert the leftselu
tering to the right would require 11 moves, one move per
element. This suggests that the two clusterings are signifi-
cantly different, counter to the intuitive expectation. ush
while many of the known approaches perform well for clus-
terings of equal size and little or no overlap, they will fall
short when it comes to measuring the distance between clus-

structure on the right essentially says that items 10 and 11 terings when such overlap degeneracies exist.

have slightly different relationships to this big clustegnce
two clusters; on the left, all elements are in the single big
cluster. So essentially these two clustering are repriegent
very similar structures — one big cluster, with minor pertur
bations. However, the significant overlap between clusters
will lead to serious problems for naive approaches to quan-
titatively compare these two simple clusterings.

A simple way to define the distance between two cluster-

Our Contribution. We propose tree different methods
for comparing clusterings which can handle overlap among
clusters. TheBest Matchand K-centerapproaches, intu-
itively compute the relative number of moves necessary to
transformC; into Cs, but in a way which takes into account
overlaps; Thénteraction Probabilityapproach first assumes
an interaction model and computes the probability that two
individuals interact given a clustering. The problem isthe

ings is to consider the number of changes (moves) necessaryreduced to comparing two sets of probabilities, which can be

to convert one clustering into the other; or, alternatively

done using any standard vector norm. We demonstrate our



measures on Twitter, Blog and email networks, and compare approach we have seen which can tolerate significant cluster
with a very recent method which can also tolerate overlaps overlaps. We denote this measure Emropybased mea-

(Lancichinetti, Fortunato, and Kertesz 2009).

Comparing Clusterings
We present three methods for comparing clusterings.
In all cases, the input is the two clustering$
{S1,89,...,S,} andCy = {S],55,...,5!.}, and the out-
putis a “distance”d(C1, Cs).

Best Match

We start with the intuitively simple®@est Matchalgorithm,
which takes as input the two clusterings, C> and a set
difference measuré(S, S’). The functiond takes as input

sure, and use it as a benchmark to compare with the methods
we propose. This Entropy measure is a special case of the
best match algorithm with a particular choice of set distanc
function, wherel(S, S) is based on how much information
the setS’ conveys aboufS — it is an asymmetric distance
measure. Specifically, assuming a random model for con-
structingS and.S’, given the size of the intersectipfin S’|

and the size$S|, |S’|, d(S,S’) captures how much uncer-
tainty remains abous, givenS’. The notion of conditional
entropy captures exactly this notion, hence,

d(s,s") = H(S|S").

two sets and computes a “distance” between them. The best The independent random model for constructihg” gives:

match algorithm determines how well the clusterings repre-
sent each other. Typically-, -) will have all the properties

of a distance measure (positivity, symmetry and the triang|
inequality), but this is not a requirement.

Specifically, for each clustes; € C;, we can compute
its best representative il;: a clusterS’ € Cy such that
d(s;,S") < d(Si,S;-) for all S’- € Cy. Thus,

d(S;,S") =

(2l J

min d(S Sh).
Jj=1,...,
We compute how wel(’; represents”; by summing dis-
tances from each member 6f to its respective best repre-
sentative inCy. We make this distance symmetric by also
summing the distances from every membetsfto its cor-
responding best representativeGh. This gives the final
symmetric measure

_d(S:, )

+Z _Imn d(s;, S;).

.....

One could normalize this distance by the number of clusters,

|C1| + |C2| to get a per-cluster distance, or by the number
of distinct elements in the clusters to get a per-element dis
tance. To fully specify the method, one needs the set dif-
ference functioni(.S, S”). The computational complexity of

this method is given by the complexity of computing the dis-

tanced between all pairs of cluste(s;, S}).

Examples We present some natural choices S, S').
The first is simply the the number of moves necessary to
convertS into S”:

d1(S,8") =S|+ 8] —2|S N S|

/
PI:P[xeS]:%', andP, = Ply eS’]—| |

N
whereN is the number of elements. We therefore have:
P=PlxeSyecs] = |S?V75/|7
Po=PlzeSy¢Ss] = ISIZISn s 7‘]?75/‘7

Py =PlagSyes] = S1=150 51 —]|\}S*mS’|7
Po=Plgsygs] = 1-HIFZIB05]
The distance is given by

d(S,8"y=H(X|Y)=H(X,Y)— H(Y),

where the joint and marginal entropies aregiven by:

1
- Z Pablogpaba
a,b=0

—Pylog P, — (1

H(X,Y)

—P,)).
There is one caveat in this measure, which is that
H(X|Y) = 0if Sis the complement of’, because know-
ing S’ completely determine$. For this reason the au-
thors in (Lancichinetti, Fortunato, and Kertesz 2009) sstg
the heuristic of usingZ (X) for such situations, i.e. when
— > o Paalog Pyy < — Za# Py log Pyy.

Observe that all these examples set distance functions
only require knowledge of the sizes of the clusters and the

HY) = — Py)log(1

One advantage of this measure is that it is a sub-modular setsizes of the pairwise intersections. This is not the case for

function, which leads to some useful algorithmic propettie
Normalizing by|S U S|,

SNy
[Sus|

In a recent development, independently of our work, an en-

dQ(S, S/) ==

our other two measures.

K-center

Unlike the Best Matchapproach in the previous section,
which works on a cluster by cluster basis, tKecenter
method first constructs a smaller representation of the two

tropy based measure is introduced to compare clusterings clusterings of size/{ and then measures the distance be-

allowing for overlap between clusters (Lancichinetti, ther
nato, and Kertesz 2009). This is the only other quantitative

tween these two smaller representations. Again, we have
inputsC1, Cy and the functionl(S, S”).



We first discuss obtain this smaller representation, which
is a K-center. Given (sayl’; = and K, a K-center
Center(C1), is asubset of; of size K which minimizes:

Z d(S;, Centery (C1)),

=1
where

d(S;, Centerg (Ch)) =

.....

Intuitively d(S;, Centerk(C4)) is the distance fronb; to
the closestS in Center (C1). The K-center captures cap-
tures as much information/structure of the original cluste
ing as possible while using at mo&t sets of the original
clustering.

In general, computing an optimd'-center is NP-hard.
We give a greedy heuristic, which is known to produce an
(e—1/e) approximation (Feige 1998) when using the set dif-
ference measuré; (S, S’) which was described in the pre-
vious section. This approximation guarantee is due to the
sub-modularity mentioned earlier. Usidg(S, S’), we lose
submodularity, hence we lose the approximation guarantee,
however in practice the greedy heuristic works well here too

The greedy heuristic starts with an emgtycenter, and
at each step adds the set which is furtherest away from the
center, untilK” sets have been added. An efficientimplemen-
tation of this algorithm maintains at each step the distafice
each set from the current workirfg-center. Initially, these
distances are given by;| (for the distance measutg), so
the greedy algorithm starts by adding the largest’s@ne
then updates the distances of each element tddttoenter

Interaction Probability

The Interaction Probabilityapproach assumes an underly-
ing interaction basis for the clusters, which is especially
well motivated in social networks, but would be applicable
in other settings. Specifically, a cluster of nodes shouid in
teract intensely among themselves and not as intensely with
outsiders. Thus, given two clusterings of the same nodes,
they represent two sets of pairwise interaction probabili-
ties. We can thus compare the two clusterings by comparing
the induced set of interaction probabilities. The advaatag
here is that clusterings are complex, however there are only
N(N — 1) (directed) interaction probabilities, so we reduce
the problem to that of comparing two sets of probabilities.
The disadvantage is that one has to assume an interaction
probability model, and the result can depend on the assumed
model. We will present a particular interaction probapilit
model based on some simple intuitive assumptions.

Given the two clustering€’; andC;, first we compute the
underlying interaction probability graplds, andG, respec-
tively. We construct the graph of communication probabili-
tiesG1, by computing for each pair of elemeritg € C; the
probability of an interaction between the two elements
denotedP;; based on the following simple model. First, we
assume that a node will (on average) interact vjmodes
in a cluster that it belongs to. So, if;j are in the same
clusterS, then: will interact with j with probability

Ly
5]
The node has such a probability to interact wijtfor every

cluster they are both members of - we call ttlisster based
interaction There is also a possibility of random interaction.

Pznt( i,j )

in O(n) updates, where each update computes the distanceWe assume that a node will on average h&veandom in-
from each set to the set just added; to obtain the distance of ateractions. So the probability of a random interaction friom

set to the new workind(-center, one simply takes the min-
imum of the distance to the set just added and the previous
distance.

The full algorithm to computel(C;, C5) takes the two
clusteringsC; and Cy and K; one first finds the twax-
centersCentery (C1) and Centery (Cs) of C; and Cy
respectively, each of size at mosf. After obtaining
Centerk(Cy) and Centeri (C3), we can use one of the
naive measures of distancBgst Matchor the Hungarian
algorithm) to compute the distance between the e
centers. Typically thé{-centers will tend to have low over-
lap (especially for smalK’) hence the naive methods will
work here as well.

Again, we can normalize by the total number of distinct
elements or the number of clusters. TKweenteralgorithm
performs well on clusterings of different size and with ever
lapping sets. It can be sensitive to clusterings of sets with
size that highly deviates from an average set size when us-

ing d, as the distance measure, as the large sets will be the P

sets included in thé(-centers. This situation is improved
by usingds.

!For the distance measue, the initial distances are all 1 and
so the greedy heuristic starts by adding a random set.

tojis

Pe

N

The constant®’. andP, are user specified, arid is the total
number of elements (the number of nodd3)represents the
extent of extra-cluster communication afy the intensity
of intra-cluster communication.

We can now compute the probability of no interaction, as-
suming that the random (extra cluster) and intra-cluster in
teractions are all independerft: — P¢*!(i, 5)) is the prob-
ability of ¢ andj do not communicate randomly; similarly
(1 — Pi(4,4)) is the probability ofi andj not communi-
cating within groupS. The product of above expressions
reflects the total probability of andj; not communicating
both internally and externally. Accounting for the factttha
i,j may be in multiple groups together in a clustering, we
have

Pert(i, j) =

( ):1_( Pe;rtZ] Hl_Pznt ))

We have a similar expression féi-, (i, j). Once we have
constructed®c, (4, j) and Pc, (i, j) for all pairs, we can find
the similarity/distance between them by using any measure



My, (G1,Gs) =

1
N2

v(i,5)

(Pcl(i’j) _Pcz(i’j))Q

My 1(Gy,Gs) = —% 3" (Pey (i,4) -log (Pey (i, 5)) + (1= P, (i, 1)) - log (1 = Pe, (i, )

v(i,5)

(@)

Figure 3: Evolution of part of the Enron organizational
structure over the periods (a): Sept. 2000 - Sept. 2001; (b):
Mar. 2000 - Mar. 2001; (c): Sept. 2001 - Sept. 2002. Note:
actorsB, C, D, F present in all three intervals. Here is who
they are:B - T. Brogan,C' - Peggy HeegD - Ajaj Jagsi and

I - Theresa Allen.

Best Match| K-Center| M, Entropy

T -C7 0.857 091 | 00144 009

Figure 5: The rate of change of the clusterings in Twitter
network over the period of twenty weeks.

for two sets of probabilities, for example, the averagelis-
tance or the Kullback - Leibler distance between the proba-
bilities. We denote these measures,, Mk, respectively.

Experimental Results
Tracking the Evolution of Community Structure

Our main application is to the quantitative measurement in
the change of community structure in social networks. As

mentioned earlier, we take as given the communities of a so-

cial network at given time periods. Some typical methods
for obtaining such communities are to aggregate the com-
munications over a sliding time window, and use some over-
lapping clustering algorithm to obtain the communitiesrove
that time window. We show an example evolution of one
such discovered cluster in the Enron email data in Fig. 3.

methodM Lo, with P, = P, = 1.

We normalized all methods excepf;,, by the number of
clusters to obtain a difference per clustéfi,, is normalized
by the number of possible pairwise interactions, which is
O(N?).

Blogs We used blog communications over 4 consecutive
weeks to construct four clusterings, C», C3 andCjy. Each
consecutive clustering was constructed one week later than
the previous, and for a consecutive pair of clusterings, the
number of distinct nodes in the network was abdut=
13, 000.

We can see in the Fig. 4 that the algorithms imply that the
rate of change of groups in the Blogosphere is high and the
groups change very dynamically from one week to another.

Twitter We repeat this experiment with the Twitter data.
We have two clustering§’y’ andC?/, which were computed
on two coinciding ten week periods. For these graphsy
2700.

We used our similarity measures to track the rate of
change in the network, shown in Fig. 5. Notice that the rate
of change in the Twitter network overl week periods
lower than the rate of change in Blogs ovet week period

Enron We repeat this experiment with the Enron data. On
each window we obtained the clustering$, C5, C% and
(. For these clusteringgy ~ 100. These clusterings were
for the network 6 months apart in time.

Next we used our similarity/distance measures to track
the rate of change in the network. Fig. 4 illustrates the rate
of change of clusterings. Notice that the rate of change in
the email networks over & month periodare significantly
lower than the rate of change in Blogs ovel aveek pe-
riod. Blogs are a significantly more dynamic social network
which should be no surprise.

We note that Blogs, Enron and Twitter are tree completely

We ran three experiments to compare the rates of community different social networks. Enron represents a company or-
change in Enron, the LiveJournal Blogosphere and Twitter. ganizational network, which has the underlying hierarchy
We compared 4 methods for measuring community evo- of command that is unlikely to change quickly over time;
lution. Best Matchis the best match approach with as the Twitter is a dynamic social network, which grows and
the set distance measure, and the Entropy method is thechanges quickly over time; and the Blogosphere is a much
best match approach with the entropy based distance mea-more dynamic ad hoc social network (compared to both En-
sure from (Lancichinetti, Fortunato, and Kertesz 2009). We ron and Twitter), where groups and their memberships can
also compared th& -center method withi = 0.75(|C4 | + change rapidly in a matter of days. This behavior is well

|Cs])/2, using the greedy heuristic wiif, to compute the
K-centers; we then used Best Match to compare khe
centers. Finally, we used the interaction probability blase

reflected in the experiments described above.
Note also that the interaction probability method shows
a behavior which is less extreme. This is due to the nor-



Cl'CQ CQ'C3 03'04
Best Match|| 0.986 0.971 0.969
K-Center 0.981 0.980 0.977
My, 0.01191| 0.01171| 0.01138
Entropy 0.998 0.998 0.997

Figure 4:

Cl-C3 | C5-C5 | C5-C)
Best Match 0.17 0.26 0.21
K-Center 0.14 0.26 0.2
My, 0.07 0.08 0.07
Entropy 0.197 0.304 0.241

The rate of change of the clusterings in Blogospbeer the period of four weeks on the left and The rate of chang

of the clusterings in the Enron organizational structuoenf2000 - 2002 on the right.

malization by N? which ranged from 100 (Enron) to 2,700
(Twitter) to 13,000 (Blogs). Thus, the interaction probabi
ity based measures are heavily influenced\oyand work
well for computing the evolution of a particular network.rFo
comparing the evolution of different networks, it is perbap
more useful to first compare the evolution of the network
with some null evolution such as the typical distance be-
tween random clusterings of the observed size distribation
in C; andCs. This way, one can normalize the observed
distance by the distance for a random evolution which would
be more appropriate for comparing between social networks.
Nevertheless, these measures are appropriate, even tvithou
such normalization to comparing performances of different
algorithms.

Conclusions

Measuring the distance between partitions is an important
problem, which has received much attention. However,

modern online data sets present examples where clusters or

communities are necessarily overlapping and new methods
for comparing such clusterings should be developed. We
have made a step in this direction by presenting three novel
definitions of the distance measure between collections of
potentially overlapping sets, and we also gave algorithms
for computing those distances.

We tested our algorithms on diverse data sets, composed
from social coalitions in the Blogosphere, Twitter and the
Enron email network. Our results give the expected conclu-
sions. Future work includes further analysis and improve-

ment of proposed distance measures as well as potential con-

struction of new measures suitable for structures in social
networks and other domains.
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