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Abstract

The typical task of unsupervised learning is to organize data,
for example into clusters, typically disjoint clusters (eg. the
K-means algorithm). One would expect (for example) a clus-
tering of books into topics to present overlapping clusters.
The situation is even more so in social networks, a source of
ever increasing data. Finding the groups or communities in
social networks based on interactions between individuals (a
measure of similarity) is an unsupervised learning task; and,
groups overlap – an individual can be a chess player and a
violin player, in which case he would interact with members
of both these groups.
The problem we address is not that of finding the overlapping
clusters, but ofcomparingtwo sets of overlapping clusters.
Such a task is the basis for comparing two different cluster-
ings, which is important for comparing algorithms with each
other or with a ground truth. From the social network point
of view, we are particularly interested in quantifying social
group evolution – how much the social group structure of a
social network changed – by comparing the set of groups at
consecutive time intervals.
There is significant prior work on comparing sets of disjoint
clusters (partitions). When overlap is allowed, the problem
becomes considerably more complex owing to the possibil-
ity of degeneracies, which we illustrate through examples.
We describe three novel definitions of the distance between
collections of potentially overlapping sets, and present algo-
rithms for computing those distances. We test our algorithms
on diverse data sets: collections composed from social groups
in Twitter, Blogosphere and Enron Email data.

Introduction
A generic task in unsupervised learning is to organize data
into clusters. In the online world of social interactions, the
examples are many: organize books into topics based on
similarities between books (for example two books are sim-
ilar if the same person read or purchased both); arrange the
members of a social network (eg. Twitter or the LiveJournal
blogosphere) into communities based on who interacts with
whom. Such a categorization of the data should ideally re-
sult in overlapping clusters (it is possible to have a science
fiction romance, or a person who belongs to a chess group
and a religious organization, etc.).
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Our motivation comes from social networks, which are a
source of abundant data (see Figure 1). Figure 1 shows ex-
ample social networks at two consecutive time periods; the
networks have been clustered into communities. The task
of clustering data into overlapping groups is indeed a chal-
lenging one, which is far from solved; however, many ap-
proaches to solving this problem exist (Baumes, Goldberg,
and Magdon-Ismail 2005; Palla et al. 2005; Newman 2005;
Nepusz et al. 2008; Gregory 2008).

It is not our goal to address this problem, and indeed,
we take as “solved”, the task of identifying the overlapping
communities. So, for example, the groups identified in Fig. 1
are given.

We address an auxiliary problem. In dynamic social net-
works (eg. Figure 1), which shows the behavior of the Ira-
nian Blogosphere, it is important to be able to measure the
rate of change of groups over time and to quantify the so-
ciety evolution in general. As can be seen in these exam-
ples, some of the groups grow rapidly over the period of
one year, new groups appear, while there can also be groups
which merge (eg. in 2008 the groups “twelver” and “re-
ligious youth” evolve into the group “CiberShia” in 2009
(Kelly and Etling 2008)). So, by how much has the com-
munity structure changed through this evolution? To answer
this question, we need to be able to measure the distance be-
tween sets of overlapping sets. While our motivation lies in
quantifying the rate of change in community structure, the
task of comparing two sets of clusters has numerous appli-
cations, the most obvious being to compare the results of a
clustering algorithm to a ground truth clustering, or to com-
pare two different clustering algorithms.

When it comes to partitions (clusterings into disjoint
clusters), numerous approaches exist, both for comparing
hard partitions and soft or fuzzy partitions. These meth-
ods can be applied in a variety of settings including to sub-
space clusterings, partial clusterings and hierarchical clus-
terings, see for example (Denoeud and Guenoche 2006;
Zhou, Li, and Zha 2005; Meila and Patrikainen 2006).

The situation is considerably more complicated when
dealing with clusterings ofoverlappingclusters. Lets first
define the problem more concretely. The general goal is to
measure the distance between two sets of clusters. Aclus-
tering is a set of clusters. The clusters in a clustering may
overlap and need not be a cover.



Iranian Blogosphere 2008 Iranian Blogosphere 2009

Figure 1: Evolution of part of the Iranian Blogosphere over the period of 2008 and 2009. Note: each dot is a Blog, the size of
the dot represents the number of other blogs that link to it, ameasure of its popularity. The position of each dot is a function of
its links with its neighbors (same topic Blogs tend to gathertogether and form “clusters”).

Let C1 = {S1, S2, . . . , Sn} andC2 = {S′
1, S

′
2, . . . , S

′
m}

be two clusterings of sizen andm respectively, whereSi

andS′
j are the individual clusters; we assume that a clus-

ter does not contain duplicates. The goal is to compute
d(C1, C2), the distance, between the clusteringsC1 andC2.
The algorithm should be efficient, and the distance should
reflect the “intuitive” distance between the cluster structures
thatC1 andC2 represent. The crux of the difficulty is illus-
trated by the example in Figure 2.
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Figure 2: Twooverlappingclusterings of the same data: on
the left, one cluster with 11 members; on the right, 2 clusters
with 10 members each.

On the right, there is essentially one big cluster,
{1, 2, 3, 4, 5, 6, 7, 8, 9} (the intersection) and the cluster-
structure on the right essentially says that items 10 and 11
have slightly different relationships to this big cluster,hence
two clusters; on the left, all elements are in the single big
cluster. So essentially these two clustering are representing
very similar structures – one big cluster, with minor pertur-
bations. However, the significant overlap between clusters
will lead to serious problems for naive approaches to quan-
titatively compare these two simple clusterings.

A simple way to define the distance between two cluster-
ings is to consider the number of changes (moves) necessary
to convert one clustering into the other; or, alternativelyto

solve a weighted bipartite matching problem to assign the
clusters in the first clustering to clusters in the second clus-
tering (without loss of generality, we can assume the two
clusterings are of the same size by adding empty clusters to
the smaller clustering). These problems can be solved by
a number of approaches such as: theHungarianalgorithm
(Munkers 1957), theMax-Flowapproach or by formulating
a Linear Programming problem. All of these approaches try
to “convert” one clustering into the other by finding the low-
est cost matching, and are reasonably efficient (cubic in the
clustering sizes). Unfortunately, all of the algorithms men-
tioned above do not account for the potential overlap be-
tween the groups and thus are not suited well to work with
clusterings found in social networks.

This naive approach works quite well for partitions, but
if we try to apply such a naive approach to the example in
Fig. 2 we run into a problem. First we need to add an empty
cluster to the left clustering. Then, to convert the left clus-
tering to the right would require 11 moves, one move per
element. This suggests that the two clusterings are signifi-
cantly different, counter to the intuitive expectation. Thus,
while many of the known approaches perform well for clus-
terings of equal size and little or no overlap, they will fall
short when it comes to measuring the distance between clus-
terings when such overlap degeneracies exist.

Our Contribution. We propose tree different methods
for comparing clusterings which can handle overlap among
clusters. TheBest Matchand K-centerapproaches, intu-
itively compute the relative number of moves necessary to
transformC1 into C2, but in a way which takes into account
overlaps; TheInteraction Probabilityapproach first assumes
an interaction model and computes the probability that two
individuals interact given a clustering. The problem is then
reduced to comparing two sets of probabilities, which can be
done using any standard vector norm. We demonstrate our



measures on Twitter, Blog and email networks, and compare
with a very recent method which can also tolerate overlaps
(Lancichinetti, Fortunato, and Kertesz 2009).

Comparing Clusterings
We present three methods for comparing clusterings.
In all cases, the input is the two clusteringsC1 =
{S1, S2, . . . , Sn} andC2 = {S′

1, S
′
2, . . . , S

′
m}, and the out-

put is a “distance”,d(C1, C2).

Best Match
We start with the intuitively simplestBest Matchalgorithm,
which takes as input the two clusteringsC1, C2 and a set
difference measured(S, S′). The functiond takes as input
two sets and computes a “distance” between them. The best
match algorithm determines how well the clusterings repre-
sent each other. Typically,d(·, ·) will have all the properties
of a distance measure (positivity, symmetry and the triangle
inequality), but this is not a requirement.

Specifically, for each clusterSi ∈ C1, we can compute
its best representative inC2: a clusterS′ ∈ C2 such that
d(Si, S

′) ≤ d(Si, S
′
j) for all S′

j ∈ C2. Thus,

d(Si, S
′) = min

j=1,...,m
d(Si, S

′
j).

We compute how wellC2 representsC1 by summing dis-
tances from each member ofC1 to its respective best repre-
sentative inC2. We make this distance symmetric by also
summing the distances from every member ofC2 to its cor-
responding best representative inC1. This gives the final
symmetric measure

d(C1, C2) =

n
∑

i=1

min
j=1,...,m

d(Si, S
′
j)+

m
∑

j=1

min
i=1,...,n

d(S′
j , Si).

One could normalize this distance by the number of clusters,
|C1| + |C2| to get a per-cluster distance, or by the number
of distinct elements in the clusters to get a per-element dis-
tance. To fully specify the method, one needs the set dif-
ference functiond(S, S′). The computational complexity of
this method is given by the complexity of computing the dis-
tanced between all pairs of clusters(Si, S

′
j).

Examples We present some natural choices ford(S, S′).
The first is simply the the number of moves necessary to
convertS into S′:

d1(S, S′) = |S| + |S′| − 2|S ∩ S′|.

One advantage of this measure is that it is a sub-modular set
function, which leads to some useful algorithmic properties.
Normalizing by|S ∪ S′|, we get the set difference measure:

d2(S, S′) = 1 −
|S ∩ S′|

|S ∪ S′|
.

In a recent development, independently of our work, an en-
tropy based measure is introduced to compare clusterings
allowing for overlap between clusters (Lancichinetti, Fortu-
nato, and Kertesz 2009). This is the only other quantitative

approach we have seen which can tolerate significant cluster
overlaps. We denote this measure theEntropybased mea-
sure, and use it as a benchmark to compare with the methods
we propose. This Entropy measure is a special case of the
best match algorithm with a particular choice of set distance
function, whered(S, S′) is based on how much information
the setS′ conveys aboutS – it is an asymmetric distance
measure. Specifically, assuming a random model for con-
structingS andS′, given the size of the intersection|S ∩S′|
and the sizes|S|, |S′|, d(S, S′) captures how much uncer-
tainty remains aboutS, givenS′. The notion of conditional
entropy captures exactly this notion, hence,

d(S, S′) = H(S|S′).

The independent random model for constructingS, S′ gives:

Px = P [x ∈ S] =
|S|

N
, andPy = P [y ∈ S′] =

|S′|

N
,

whereN is the number of elements. We therefore have:

P11 = P [x ∈ S, y ∈ S′] =
|S ∩ S′|

N
,

P10 = P [x ∈ S, y 6∈ S′] =
|S| − |S ∩ S′|

N
,

P01 = P [x 6∈ S, y ∈ S′] =
|S′| − |S ∩ S′|

N
,

P00 = P [x 6∈ S, y 6∈ S′] = 1 −
|S| + |S′| − |S ∩ S′|

N
.

The distance is given by

d(S, S′) = H(X|Y ) = H(X,Y ) − H(Y ),

where the joint and marginal entropies aregiven by:

H(X,Y ) = −

1
∑

a,b=0

Pab log Pab,

H(Y ) = −Py log Py − (1 − Py) log(1 − Py).

There is one caveat in this measure, which is that
H(X|Y ) = 0 if S is the complement ofS′, because know-
ing S′ completely determinesS. For this reason the au-
thors in (Lancichinetti, Fortunato, and Kertesz 2009) suggest
the heuristic of usingH(X) for such situations, i.e. when
−

∑

a Paa log Paa < −
∑

a6=b Pab log Pab.
Observe that all these examples set distance functions

only require knowledge of the sizes of the clusters and the
sizes of the pairwise intersections. This is not the case for
our other two measures.

K-center

Unlike the Best Matchapproach in the previous section,
which works on a cluster by cluster basis, theK-center
method first constructs a smaller representation of the two
clusterings of sizeK and then measures the distance be-
tween these two smaller representations. Again, we have
inputsC1, C2 and the functiond(S, S′).



We first discuss obtain this smaller representation, which
is a K-center. Given (say)C1 = and K, a K-center
CenterK(C1), is a subset ofC1 of sizeK which minimizes:

n
∑

i=1

d(Si, CenterK(C1)),

where

d(Si, CenterK(C1)) = min
j=1,...,n

(d(Si, Su)).

Intuitively d(Si, CenterK(C1)) is the distance fromSi to
the closestS in CenterK(C1). TheK-center captures cap-
tures as much information/structure of the original cluster-
ing as possible while using at mostK sets of the original
clustering.

In general, computing an optimalK-center is NP-hard.
We give a greedy heuristic, which is known to produce an
(e−1/e) approximation (Feige 1998) when using the set dif-
ference measured1(S, S′) which was described in the pre-
vious section. This approximation guarantee is due to the
sub-modularity mentioned earlier. Usingd2(S, S′), we lose
submodularity, hence we lose the approximation guarantee,
however in practice the greedy heuristic works well here too.

The greedy heuristic starts with an emptyK-center, and
at each step adds the set which is furtherest away from the
center, untilK sets have been added. An efficient implemen-
tation of this algorithm maintains at each step the distanceof
each set from the current workingK-center. Initially, these
distances are given by|Si| (for the distance measured1), so
the greedy algorithm starts by adding the largest set.1 One
then updates the distances of each element to theK-center
in O(n) updates, where each update computes the distance
from each set to the set just added; to obtain the distance of a
set to the new workingK-center, one simply takes the min-
imum of the distance to the set just added and the previous
distance.

The full algorithm to computed(C1, C2) takes the two
clusteringsC1 and C2 and K; one first finds the twoK-
centersCenterK(C1) and CenterK(C2) of C1 and C2

respectively, each of size at mostK. After obtaining
CenterK(C1) and CenterK(C2), we can use one of the
naive measures of distance (Best Matchor the Hungarian
algorithm) to compute the distance between the twoK-
centers. Typically theK-centers will tend to have low over-
lap (especially for smallK) hence the naive methods will
work here as well.

Again, we can normalize by the total number of distinct
elements or the number of clusters. TheK-centeralgorithm
performs well on clusterings of different size and with over-
lapping sets. It can be sensitive to clusterings of sets with
size that highly deviates from an average set size when us-
ing d1 as the distance measure, as the large sets will be the
sets included in theK-centers. This situation is improved
by usingd2.

1For the distance measured2, the initial distances are all 1 and
so the greedy heuristic starts by adding a random set.

Interaction Probability
The Interaction Probabilityapproach assumes an underly-
ing interaction basis for the clusters, which is especially
well motivated in social networks, but would be applicable
in other settings. Specifically, a cluster of nodes should in-
teract intensely among themselves and not as intensely with
outsiders. Thus, given two clusterings of the same nodes,
they represent two sets of pairwise interaction probabili-
ties. We can thus compare the two clusterings by comparing
the induced set of interaction probabilities. The advantage
here is that clusterings are complex, however there are only
N(N − 1) (directed) interaction probabilities, so we reduce
the problem to that of comparing two sets of probabilities.
The disadvantage is that one has to assume an interaction
probability model, and the result can depend on the assumed
model. We will present a particular interaction probability
model based on some simple intuitive assumptions.

Given the two clusteringsC1 andC2 first we compute the
underlying interaction probability graphsG1 andG2 respec-
tively. We construct the graph of communication probabili-
tiesG1, by computing for each pair of elementsi, j ∈ C1 the
probability of an interaction between the two elementsi, j,
denotedPij based on the following simple model. First, we
assume that a node will (on average) interact withPg nodes
in a cluster that it belongs to. So, ifi, j are in the same
clusterS, theni will interact with j with probability

P int
S (i, j) =

Pg

|S|
.

The nodei has such a probability to interact withj for every
cluster they are both members of - we call thiscluster based
interaction. There is also a possibility of random interaction.
We assume that a node will on average havePe random in-
teractions. So the probability of a random interaction fromi
to j is

P ext(i, j) =
Pe

N
.

The constantsPe andPg are user specified, andN is the total
number of elements (the number of nodes);Pe represents the
extent of extra-cluster communication andPg the intensity
of intra-cluster communication.

We can now compute the probability of no interaction, as-
suming that the random (extra cluster) and intra-cluster in-
teractions are all independent:(1 − P ext(i, j)) is the prob-
ability of i andj do not communicate randomly; similarly
(1 − P int

S (i, j)) is the probability ofi andj not communi-
cating within groupS. The product of above expressions
reflects the total probability ofi andj not communicating
both internally and externally. Accounting for the fact that
i, j may be in multiple groups together in a clustering, we
have

PC1
(i, j) = 1 − (1 − P ext(i, j)) ·

n
∏

k=1

(1 − P int
Sk

(i, j)).

We have a similar expression forPC2
(i, j). Once we have

constructedPC1
(i, j) andPC2

(i, j) for all pairs, we can find
the similarity/distance between them by using any measure
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Figure 3: Evolution of part of the Enron organizational
structure over the periods (a): Sept. 2000 - Sept. 2001; (b):
Mar. 2000 - Mar. 2001; (c): Sept. 2001 - Sept. 2002. Note:
actorsB,C,D, F present in all three intervals. Here is who
they are:B - T. Brogan,C - Peggy Heeg,D - Ajaj Jagsi and
F - Theresa Allen.

Best Match K-Center ML2
Entropy

C ′′
1 - C ′′

2 0.857 0.91 0.0144 0.9

Figure 5: The rate of change of the clusterings in Twitter
network over the period of twenty weeks.

for two sets of probabilities, for example, the averageL2 dis-
tance or the Kullback - Leibler distance between the proba-
bilities. We denote these measuresML2

, MKL respectively.

Experimental Results
Tracking the Evolution of Community Structure
Our main application is to the quantitative measurement in
the change of community structure in social networks. As
mentioned earlier, we take as given the communities of a so-
cial network at given time periods. Some typical methods
for obtaining such communities are to aggregate the com-
munications over a sliding time window, and use some over-
lapping clustering algorithm to obtain the communities over
that time window. We show an example evolution of one
such discovered cluster in the Enron email data in Fig. 3.
We ran three experiments to compare the rates of community
change in Enron, the LiveJournal Blogosphere and Twitter.

We compared 4 methods for measuring community evo-
lution. Best Matchis the best match approach withd2 as
the set distance measure, and the Entropy method is the
best match approach with the entropy based distance mea-
sure from (Lancichinetti, Fortunato, and Kertesz 2009). We
also compared theK-center method withK = 0.75(|C1| +
|C2|)/2, using the greedy heuristic withd2 to compute the
K-centers; we then used Best Match to compare theK-
centers. Finally, we used the interaction probability based

methodML2, with Pe = Pg = 1.
We normalized all methods exceptML2

by the number of
clusters to obtain a difference per cluster;ML2

is normalized
by the number of possible pairwise interactions, which is
O(N2).

Blogs We used blog communications over 4 consecutive
weeks to construct four clusteringsC1, C2, C3 andC4. Each
consecutive clustering was constructed one week later than
the previous, and for a consecutive pair of clusterings, the
number of distinct nodes in the network was aboutN =
13, 000.

We can see in the Fig. 4 that the algorithms imply that the
rate of change of groups in the Blogosphere is high and the
groups change very dynamically from one week to another.

Twitter We repeat this experiment with the Twitter data.
We have two clusteringsC ′′

1 andC ′′
2 , which were computed

on two coinciding ten week periods. For these graphs,N ≈
2700.

We used our similarity measures to track the rate of
change in the network, shown in Fig. 5. Notice that the rate
of change in the Twitter network over a10 week periodis
lower than the rate of change in Blogs over a1 week period.

Enron We repeat this experiment with the Enron data. On
each window we obtained the clusteringsC ′

1, C ′
2, C ′

3 and
C ′

4. For these clusterings,N ≈ 100. These clusterings were
for the network 6 months apart in time.

Next we used our similarity/distance measures to track
the rate of change in the network. Fig. 4 illustrates the rate
of change of clusterings. Notice that the rate of change in
the email networks over a6 month periodare significantly
lower than the rate of change in Blogs over a1 week pe-
riod. Blogs are a significantly more dynamic social network
which should be no surprise.

We note that Blogs, Enron and Twitter are tree completely
different social networks. Enron represents a company or-
ganizational network, which has the underlying hierarchy
of command that is unlikely to change quickly over time;
the Twitter is a dynamic social network, which grows and
changes quickly over time; and the Blogosphere is a much
more dynamic ad hoc social network (compared to both En-
ron and Twitter), where groups and their memberships can
change rapidly in a matter of days. This behavior is well
reflected in the experiments described above.

Note also that the interaction probability method shows
a behavior which is less extreme. This is due to the nor-



C1 - C2 C2 - C3 C3 - C4

Best Match 0.986 0.971 0.969
K-Center 0.981 0.980 0.977
ML2

0.01191 0.01171 0.01138
Entropy 0.998 0.998 0.997

C ′
1 - C ′

2 C ′
2 - C ′

3 C ′
3 - C ′

4

Best Match 0.17 0.26 0.21
K-Center 0.14 0.26 0.2
ML2

0.07 0.08 0.07
Entropy 0.197 0.304 0.241

Figure 4: The rate of change of the clusterings in Blogosphere over the period of four weeks on the left and The rate of change
of the clusterings in the Enron organizational structure from 2000 - 2002 on the right.

malization byN2 which ranged from 100 (Enron) to 2,700
(Twitter) to 13,000 (Blogs). Thus, the interaction probabil-
ity based measures are heavily influenced byN , and work
well for computing the evolution of a particular network. For
comparing the evolution of different networks, it is perhaps
more useful to first compare the evolution of the network
with some null evolution such as the typical distance be-
tween random clusterings of the observed size distributions
in C1 andC2. This way, one can normalize the observed
distance by the distance for a random evolution which would
be more appropriate for comparing between social networks.
Nevertheless, these measures are appropriate, even without
such normalization to comparing performances of different
algorithms.

Conclusions
Measuring the distance between partitions is an important
problem, which has received much attention. However,
modern online data sets present examples where clusters or
communities are necessarily overlapping and new methods
for comparing such clusterings should be developed. We
have made a step in this direction by presenting three novel
definitions of the distance measure between collections of
potentially overlapping sets, and we also gave algorithms
for computing those distances.

We tested our algorithms on diverse data sets, composed
from social coalitions in the Blogosphere, Twitter and the
Enron email network. Our results give the expected conclu-
sions. Future work includes further analysis and improve-
ment of proposed distance measures as well as potential con-
struction of new measures suitable for structures in social
networks and other domains.
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