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Abstract

Background: The identification and characterization of
functional, non-coding DNA sequence elements is key to the
understanding of cell function, differentiation, and pathology
because the elements affect when and to what extent nearby
genes are expressed. The proliferation of completed genomic
sequences during the past few years has provided impetus for
numerous comparative-genomics efforts to identify such ele-
ments, while simultaneously underscoring the profound dif-
ficulty of accurate and exhaustive identification. In particu-
lar, when there is little evolutionary separation between the
species, the data from phylogenetically related sites are sig-
nificantly correlated, and the advantage of having multiple
genomes is significantly diminished. Little work has been
done to quantify the utility of obtaining additional genomes
for the characterization of a DNA motif.

Results: We provide a mathematical formalism and an al-
gorithm for evaluating a phylogenetic tree in terms of its util-
ity for constructing a nucleotide equilibrium probability dis-
tribution for each multiply aligned DNA sequence position.
“Motif efficiency” is measured via Fisher Information and the
Cramér-Rao Inequality, and is scaled so that a set of indistin-
guishable genomes is deemed to have a 0% motif efficiency,
and a set of well-separated genomes is deemed to have 100%
motif efficiency. We analyze several standardized phyloge-
netic trees and several phylogenetic trees from the literature.

Conclusions: In our analysis of the standardized phyloge-
netic trees, we find that inadequate species separation is a par-
ticular matter for concern when the number of species is large
or when the DNA sequence positions to be characterized have
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Department of Health, Albany, NY 12208-3425, USA.

a nucleotide equilibrium probability distribution that is dom-
inated by a pair of nucleotides. In our analysis of phyloge-
netic trees from the literature, we find that for a phylogenetic
tree of nine mammals and for a phylogenetic tree of 45 ver-
tebrates, motif efficiency is around 10%, and that, for a set of
14 prokaryotes, motif efficiency is around 33%.

Availability: A web server that analyzes phylogenetic
trees for their effective species count and motif efficiency
is available at http://bayesweb.wadsworth.org/
cgi-bin/Effective.pl.

Background

There is an explosion in the number of genomes being se-
quenced. While much effort has been focused on sequencing
the genomes of widely divergent species, recently there has
also been a focus on sequencing the genomes of closely re-
lated species, with the objective of comparing and contrast-
ing them for subtle differences. There has been some work
towards quantifying the utility of multiple genomes for the
detection of conserved DNA regions. However, we know of
no attempts to quantify the utility of multiple genomes for the
purpose of characterizing a DNA motif. That is, existing anal-
yses can tell us whether a set of related genomes will likely re-
veal the locations of DNA conserved regions, but these analy-
ses do not indicate the accuracy to which we will be able to de-
scribe a position of a conserved motif in terms of a nucleotide
equilibrium probability distribution or position frequency ma-
trix.

Our Previous Work in Conservation Detection

Because we build upon it in the current article, we give some
detail of our previous work. A phylogenetic tree of nine mam-
malian genomes being sequenced was analyzed by us for its
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ability to reconstruct neutral multiply aligned DNA sequence
positions [1]. Mathematically, our analysis addressed the fol-
lowing situation. Suppose that nucleotides are generated uni-
formly at random for the genome of the common ancestor of
the nine mammals, with the nine mammalian genomes then
being generated by use of the given phylogenetic tree and the
nucleotide substitution model of Jukes & Cantor (1969) [2].
Suppose then, that we seek the nucleotide substitution model
that best explains the generated data and, by some distance
metric, measure how different that model is from the original
model used to generate the genomes. Suppose further that this
thought experiment is repeated many times, and that the re-
sulting squared distances are averaged to give a model estima-
tor variance. When the model estimator variance is high, then
the phylogenetic tree is not efficient at reconstructing neutral
sequence positions; when the model estimator variance is low,
then the phylogenetic tree is efficient at reconstructing neutral
sequence positions.

For the estimator model, in this earlier work we employed
the nucleotide substitution model described by Felsenstein
(1981) [3]. This is a model that is parameterized by a nu-
cleotide equilibrium probability distribution, and it coincides
with the model of Jukes & Cantor (1969) when it is parame-
terized with a uniform nucleotide equilibrium probability dis-
tribution. We defined the distance between the uniform distri-
bution �π = (0.25, 0.25, 0.25, 0.25), which was used to gen-
erate the genomes, and the nucleotide equilibrium probability
distribution �θ = (θA, θC , θG, θT ) that best explained the gen-
erated data, by

distance =

√ ∑
b∈A,C,G,T

(θb − πb)
2 . (1)

For a collection of distantly related genomes, the estimator
variance of this distance measure is expected to be inversely
proportional to the number of genomes; thus, we defined the
“effective species count” in proportion to the reciprocal of the
estimator variance, calibrated so that it gives the number of
species in the limit where the species are very distantly re-
lated.

In a very similar manner, we also sought the nucleotide sub-
stitution model that best explained the generated data among
those models that obey the Jukes & Cantor (1969) model, with
an extra “conservation” parameter γ that scaled all phyloge-
netic tree branch lengths. A phylogenetic tree was then judged
by how well experiments would recover the value of γ = 1

that was used to generate random genomes of neutral DNA
positions.

However, by computing only the ability to reconstruct neu-
tral DNA positions, our analysis in did not describe how ac-
curately functional DNA positions can be characterized; at
best it quantified the detectability of conservation via the in-
compatibility of a conserved position’s sequence data with the
neutral/null model [1]. Furthermore, we employed simplistic

nucleotide substitution models, Felsenstein (1981) [3] (which
models non-uniform nucleotide equilibrium probability dis-
tributions in an ad hoc manner) and Jukes & Cantor (1969)
[2] (with a parameter that models conservation in an ad hoc
manner).

Other Previous Work in Conservation Detection

Cooper et al. (2003) measured “relative genome information
content” for a new genome relative to genomes already se-
quenced as the ratio of (a) the total of the “relative lengths”
for the edges connecting the new genome to the phylogenetic
tree of the sequenced genomes, divided by (b) the total of the
relative lengths for the edges within the phylogenetic tree of
sequenced genomes [4]. They defined the relative length of
an edge as its length, as a fraction of the total of all edge
lengths in a phylogenetic tree of relevant genomes, averaged
over several phylogenetic trees constructed from different data
sets. Pardi & Goldman (2005) also measured efficiency in
terms of the total of the phylogenetic tree branch lengths, and
showed that a greedy approach for the sequencing ordering of
genomes was optimal [5]. However, while the total of branch
lengths is an indication of the dispersion of the genomes, the
approach of these two articles fails to distinguish phyloge-
netic trees with similar total branch lengths that, nonetheless,
have different abilities to characterize a nucleotide equilib-
rium probability distribution.

McAuliffe et al. (2005) did a conservation detectability
analysis similar to our γ-based analysis (described above [1]),
but quantified detectability in terms of the probability of the
rejection of the γ = 1 null model, rather than in terms of the
estimator variance of the γ model parameter [6]. Eddy (2005)
performed a similar detection analysis, on phylogenetic trees
with a star topology (defined later), but rather than focusing
on a single nucleotide position at a time, explored whether a
conserved feature of larger width could be distinguished from
the null model [7].

Margulies et al. (2005) describes an economically efficient
approach to detecting conserved regions of DNA sequence
[8]. It shows that nucleotide for nucleotide (i.e., dollar for dol-
lar) the low redundancy sequencing of additional genomes is
a useful first step in locating conserved regions in the species
of interest.

None of the above approaches quantifies the ability of the
genomes of species related by a phylogenetic tree to yield
an accurate nucleotide equilibrium probability distribution for
each multiply aligned DNA sequence position. We address
this goal in the following.

Approach

We imagine the repeated experiment described in the Intro-
duction (and in [1]). However, in that earlier work we used
the Felsenstein (1981) nucleotide substitution model, which

2



provides an ad hoc approach to non-uniform nucleotide equi-
librium probability distributions that arise from selection pres-
sures, and evaluated model parameter estimator variance near
a uniform nucleotide equilibrium probability distribution [3].
Instead, we now adopt the model of Halpern & Bruno (1998)
[9], which explicitly incorporates selection pressures by an-
alyzing the probability of fixation of a nucleotide within a
population, and we examine model parameter estimator vari-
ance at a number of nucleotide equilibrium probability distri-
butions.

Algorithmically, we do not conduct the repeated experi-
ment but we arrive at the same results via a Fisher Informa-
tion approach, employing the Cramér-Rao Inequality. Fur-
thermore, in addition to computing an effective species count,
we now compute a motif efficiency for a phylogenetic tree.
This is calculated as

motif efficiency =
(effective species count) − 1

(number of species) − 1
. (2)

This formula allows us to compare on equal footing phyloge-
netic trees with different numbers of species. A phylogenetic
tree in the limit where all branch lengths are zero has an effec-
tive species count of 1.0, and a phylogenetic tree in the limit
where all lengths approach infinity has an effective species
count equal to the number of species. Thus, the motif effi-
ciency is a measure of how much of the possible increase in
effective species count is achieved by a phylogenetic tree.

Although the approach works equally well on any phylo-
genetic tree, for demonstration purposes we apply the algo-
rithm to standardized phylogenetic trees with a star topology,
parameterized by a pairwise distance. The parameter is the
distance between the members of any pair of species; the phy-
logenetic tree is a star in that, from a shared common ances-
tor, each species is at a distance that is half the parameter
value. We observe how the pairwise distance and the num-
ber of species affect the effective species count and motif ef-
ficiency.

We also apply the algorithm to phylogenetic trees from the
literature, a phylogenetic tree of nine mammals from the Zoo
project [10], a phylogenetic tree of 14 prokaryotes (7 Enter-
obacteriales, 4 Vibrionales, and 3 Pasteurellales) [11], and a
phylogenetic tree of 45 vertebrates from the ENCODE project
[12]. See Figures 1, 2, and 3.

Methods

The Halpern & Bruno (1998) Model

The “HB98” approach [9] computes a nucleotide substitu-
tion model from (1) a background nucleotide substitution
model that is appropriate for neutral sequence positions and
(2) a foreground nucleotide equilibrium probability distribu-
tion that describes the equilibrium that results from selec-
tion/fitness pressures.

•193
•963 •209 •56 human

•57 chimp

•351 baboon

•
3171

•767 rat

•758 mouse

•
399

•419 •1112 cow

•1040 pig

•
572

•754 cat

•1062 dog

Figure 1: Phylogenetic tree of nine species from the Zoo
project [10]. The numbers shown are the expected numbers of
mutations that would occur in 10,000 neutral DNA sequence
positions.
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Figure 2: Phylogenetic tree of 14 prokaryotic species, which
is reported to be realistic, although not definitive [11]. The
numbers shown are the expected numbers of mutations that
would occur in 10,000 neutral DNA sequence positions.
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Figure 3: Phylogenetic tree of 45 species from the ENCODE project [12]. This is the August 2006 version generated by Elliott
Margulies. It is built from four-way-degenerate third codon positions in the ENm001 (i.e., the greater CFTR) ENCODE region.
The numbers shown are the expected numbers of mutations that would occur in 10,000 neutral DNA sequence positions.
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The instantaneous rate matrix for the HB98 nucleotide sub-
stitution model is computed from their Equation 13. With re-
arrangement of terms, and in our notation, the formula be-
comes

R′
rc =

⎧⎨
⎩ Rrc

(
log(πrRrc

πcRcr
)

πrRrc
πcRcr

−1

)
if πrRrc �= πcRcr

Rrc if πrRrc = πcRcr

(3)

where r and c are the row and column indices of matrices, re-
spectively; r and c range over {A,C,G, T}; the background
model is described by Rrc, the instantaneous rate of substitu-
tion from nucleotide r to nucleotide cwhen selective pressures
do not apply; �π is the foreground nucleotide equilibrium prob-
ability distribution resulting from selective pressures; and the
foreground model is described by R′

rc, the instantaneous rate
of substitution from nucleotide r to nucleotide c that arises
when selective pressures do apply.

For the background nucleotide substitution model, we use
the model of Jukes & Cantor (1969) [2], for which

R =

⎛
⎜⎜⎝

−1 1/3 1/3 1/3
1/3 −1 1/3 1/3
1/3 1/3 −1 1/3
1/3 1/3 1/3 −1

⎞
⎟⎟⎠ . (4)

(Although this background nucleotide substitution model is
simplistic, the foreground model is the important one.) The
value of �π, which determines the foreground nucleotide sub-
stitution model, is varied by example in the Results section
to demonstrate its effect on effective species count and motif
efficiency.

Probability of the Nucleotide Data

The instantaneous rate matrixR′ is converted to the nucleotide
substitution model matrix M for a branch of length x via ma-
trix exponentiation [13],

M = exp(xR) . (5)

The branches’ nucleotide substitution model matrices are
used in the tree-likelihood algorithm of Felsenstein (1981) [3]
to compute the probability of the nucleotide data, one nu-
cleotide per species, at a single multiply aligned DNA se-
quence position.

Root Mean Square Estimator Variance

The effective species count is defined in terms of an error
bar (or confidence limit) size. When a nucleotide equilibrium
probability distribution can be estimated with a tight error bar,
this is reflected as a high effective species count and high mo-
tif efficiency, in a manner that will become apparent in the fol-
lowing. We define the distance between the actual nucleotide
equilibrium probability distribution and an estimate of it by

Equation 1, and we deem the size of the error bar to be the
root mean square of the distance values that would be col-
lected should the experiment described in the Introduction be
run multiple times.

Fisher Information and the Cramér-Rao In-
equality

We can calculate the root mean square distance without re-
peated simulation, via a Fisher Information matrix as de-
scribed below. According to the Cramér-Rao Inequality (see,
e.g., [14]), this approach in general guarantees only a lower
bound on the root mean square value (and thus an upper
bound on the effective species count and motif efficiency). In
practice, however, we can make a stronger statement. Con-
sider the situation in which we have several multiply aligned
DNA sequence positions that are subject to the same selec-
tive pressures, e.g., this might be the case for several DNA
positions each believed to be the first nucleotide of a com-
mon cis-regulatory element (although see [15]). Although
the nucleotides at any one of these multiply aligned DNA se-
quence positions may be closely correlated due to close phy-
logenetic relationships of the aligned genomes, it is often rea-
sonable to posit that the paralogous relationship between any
two of these multiply aligned DNA sequence positions is sig-
nificantly less close. When data from these nearly statisti-
cally independent multiply aligned DNA sequence positions
are combined, to produce a nucleotide equilibrium probability
distribution estimate, the bound provided by the Cramér-Rao
Inequality will be quite tight. (Mathematically, when a large
number of statistically independent data sets are combined,
the Cramér-Rao Inequality approaches equality.)

The effective species count is computed via an expected
log-likelihood, defined as

LL(�θ|�π) =
∑

D∈4(species)

log(Pr[D|�θ]) Pr[D|�π] , (6)

where D denotes the nucleotide data, one nucleotide per
species, at a single multiply aligned DNA sequence position;
the summation is over all 4(number of species) possibilities
for D; �π is the foreground nucleotide equilibrium probabil-
ity distribution parameter of the HB98 nucleotide substitution
model; Pr[D|�π] is the probability of generating nucleotides
D, given the phylogenetic tree and the foreground nucleotide
equilibrium probability distribution �π, computed via Felsen-
stein’s tree-likelihood algorithm; and Pr[D|�θ] is the same
probability if the nucleotide data are instead explained by the
HB98 nucleotide substitution model parameterized with the
foreground nucleotide equilibrium probability distribution �θ.

When the number of species exceeds 8, we instead ran-
domly generate genomes of length 48 according to the phy-
logenetic tree and foreground nucleotide substitution model
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parameterized by �π, and we calculate the approximation

LL(�θ|�π) = 4−8
∑

D∈48

log(Pr[D|�θ]) , (7)

where the sum is over all 48 randomly generated multiply
aligned DNA sequence positions.

If it were not for the fact that the components of �θ are con-
strained to sum to 1.0, our approach to applying the Cramér-
Rao Inequality would be to compute the matrix of pure and
mixed second derivatives of LL with respect to the nucleotide
equilibrium probability distribution components θA, θC , θG,
and θT ; to then negate this matrix and evaluate it at �θ = �π
so as to get the Fisher Information matrix; to take the matrix
inverse; and finally to sum the values along the resulting diag-
onal

Variance[distance] = Trace (V ) (8)

V =

(
− ∂2LL(�θ|�π)

∂θr∂θc

∣∣∣∣∣
�θ=�π

)−1

(9)

where r and c range over {A,C,G, T} and are the row and
column indices of the matrix, respectively.

However, because there are only three degrees of freedom
in the four parameters θA, θC , θG, and θT , we re-parameterize
the nucleotide equilibrium probability distribution. Because
we are employing the matrix trace in Equation 8, any linear
re-parameterization is equivalent. With

θA = ψ1 (10)

θC = ψ2 (11)

θG = ψ3 (12)

θT = 1 − ψ1 − ψ2 − ψ3 , (13)

Equation 9 becomes

V =⎛
⎜⎜⎝

1 0 0

0 1 0

0 0 1

−1 −1 −1

⎞
⎟⎟⎠
(
−∂

2LL(�θ(�ψ)|�π)

∂ψi ∂ψj

)−1
⎛
⎝ 1 0 0 −1

0 1 0 −1

0 0 1 −1

⎞
⎠ .(14)

This is computed numerically with Δψi = 10−5. Rather than
using T specially — Equation 13 is of a form different from
that of Equations 10, 11, and 12 — in our implementation we
instead treat specially a nucleotide that achieves the largest of
the four values πA, πC , πG, and πT .

We compute

effective species count =
Trace(V1)

Trace(V )
(15)

where V1 is the V that arises on a degenerate phylogenetic tree
with no branches and only a single species. (Note that, as for

Trace(V ) generally, the value of Trace(V1) will depend on the
foreground nucleotide equilibrium probability distribution �π.)
This ratio is designed so as to yield a value of 1.0 in the limit
when all phylogenetic tree branches have length zero, and it
will yield a value that is the number of species in the phylo-
genetic tree in the limit that all the phylogenetic tree branches
have length approaching infinity.

We compute the motif efficiency using Equation 2.

Application to Synthetic and Real Phylogenetic
Trees

We explored the effective species counts and motif efficien-
cies for star-topology phylogenetic trees with 2, 3, 4, 5, 8, 10,
16, and 25 species, with pairwise species separation ranging
from 0.00 to 5.00, in increments of 0.05. We also computed
the effective species counts and motif efficiencies for the Zoo,
prokaryote, and ENCODE phylogenetic trees depicted in Fig-
ures 1, 2, and 3.

For the star-topology phylogenetic trees, the notation S-
EEEC used in Figures 4 and 5 and in Table 2 denotes an anal-
ysis of a phylogenetic tree with S species and those multiply
aligned DNA sequence positions that, due to selection pres-
sures, have a nucleotide equilibrium probability distribution
corresponding to EEEC (as described in Table 1).

Figure 4 shows the motif efficiency for star-topology phy-
logenetic trees with 2, 8, and 25 species. Figure 5 shows the
motif efficiency for star-topology phylogenetic trees for the
nucleotide equilibrium probability distributions 001S, 250X,
and 001P.

The results for the Zoo, prokaryote, and ENCODE phylo-
genetic trees are in Table 2.

Discussion

We find that, when the goal is the reconstruction of a nu-
cleotide equilibrium probability distribution for a multiply
aligned DNA sequence position (or a collection of such po-
sitions subject to the same selective pressures, e.g., this may
arise when the positions are all the same position of a common
cis-regulatory element), it is important to get phylogenetically
well-separated genomes. We find that nucleotide equilibrium
probability distributions strongly dominated by a single nu-
cleotide are more motif-efficient than is a uniform nucleotide
equilibrium probability distribution; the latter is, in turn, more
motif-efficient than are nucleotide equilibrium probability dis-
tributions strongly dominated by a pair of nucleotides (Fig-
ure 4). We find that star-topology phylogenetic trees with
fewer species are more motif-efficient than those with more
species (Figure 5).

Looking at, e.g., the middle column of Table 2, we find the
effective species counts of 1.73, 5.26, and 5.8, for the Zoo,
prokaryote, and ENCODE phylogenetic trees. While there are
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Code

1st most
common
nucleotide

2nd most
common
nucleotide

3rd most
common
nucleotide

4th most
common
nucleotide

001S 0.997 0.001 0.001 0.001
010S 0.970 0.010 0.010 0.010
100S 0.700 0.100 0.100 0.100
250X 0.250 0.250 0.250 0.250
100P 0.400 0.400 0.100 0.100
010P 0.490 0.490 0.010 0.010
001P 0.499 0.499 0.001 0.001

Table 1: The three-digit code prefix indicates the frequency of the least common nucleotide. The one-letter code suffix in-
dicates the number of nucleotides that dominate the nucleotide equilibrium probability distribution: the letter “S” means that
the nucleotide equilibrium probability distribution is dominated by a single nucleotide, the letter “P” means that the nucleotide
equilibrium probability distribution is dominated by a pair of nucleotides, and the letter “X” means that no nucleotide dominates
the nucleotide equilibrium probability distribution.

001S 010S 100S 250X 100P 010P 001P

Zoo/9 3.05
(26%)

2.30
(16%)

1.78
(10%)

1.73
(9%)

1.68
(9%)

1.44
(6%)

1.38
(5%)

prokaryote/14 9.31
(64%)

7.32
(49%)

5.27
(33%)

5.26
(33%)

4.74
(29%)

3.30
(18%)

3.04
(16%)

ENCODE/45 11.8
(25%)

8.7
(17%)

5.9
(11%)

5.8
(11%)

5.3
(10%)

3.8
(6%)

3.5
(6%)

Table 2: The effective species count, with the motif efficiency in parentheses, is given for several different possible types of
selective pressure. See Table 1 for an explanation of the column headings. The Zoo phylogenetic tree has nine species, the
prokaryote phylogenetic tree has 14 species, and the ENCODE phylogenetic tree has 45 species. In this table, observe that,
although the ENCODE project includes 44 genomes in addition to human, correlation of those genomes to human make them
worth only 6%–25% of an “independent genome” each, in terms of the characterization of nucleotide equilibrium probability
distributions at human DNA sequence positions. The phylogenetic tree is closest to a phylogenetic tree of 45 well-separated
species for nucleotide equilibrium probability distributions that are very strongly dominated by a single nucleotide (e.g., 001S
and 010S), although the efficiency in this case is still far below 100%.
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Figure 4: Motif efficiency for phylogenetic trees of 2, 8, and
25 species as a function of their pairwise phylogenetic dis-
tance, and the selective pressures. See Table 1 for an expla-
nation of the labels 001S, 010S, 100S, 250X, 100P, 010P and
001P for selective pressures. In all three frames, we see that
the nucleotide equilibrium probability distributions strongly
dominated by a single nucleotide are more motif-efficient than
is a uniform nucleotide equilibrium probability distribution;
the latter is, in turn, more motif-efficient than are the nu-
cleotide equilibrium probability distributions strongly domi-
nated by a pair of nucleotides. That is, it is most important
to get well-separated genomes when the goal is the charac-
terization of DNA sequence positions that have a nucleotide
equilibrium probability distribution dominated by a pair of nu-
cleotides.
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Figure 5: Motif efficiency for different nucleotide equilibrium
probability distributions as a function of their pairwise phylo-
genetic distance, and the number of species. See Table 1 for an
explanation of the labels 001S, 250X, and 001P for selective
pressures. In all three frames, we see that the star-topology
phylogenetic trees with fewer species are more motif-efficient
than those with more species. Thus, inadequate species sep-
aration is more of a matter for concern when the number of
genomes is large.
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many other good reasons for large sequencing efforts, the se-
quencing of fewer genomes may be sufficient for the purpose
of computing nucleotide equilibrium probability distributions.
For the Zoo phylogenetic tree, the selection of just three dis-
tantly related genomes from the nine available genomes would
have produced nearly the same effective species counts as the
phylogenetic tree for all nine mammals; thus, characterization
might have been achieved with fewer genomes, as long as the
ability to make a multiple sequence alignments did not suffer
appreciably. Likewise, for the prokaryote and ENCODE phy-
logenetic trees, the choice of 6–10 distantly related genomes
might have been as effective as the full phylogenetic trees, so
long as the sequence alignments were still obtainable. For the
characterization of multiply aligned DNA sequence positions
with the 001P nucleotide equilibrium probability distribution,
even fewer genomes are required.

Whether effective species count or motif efficiency is the
more appropriate measure depends upon the context. The web
server available at http://bayesweb.wadsworth.
org/cgi-bin/Effective.pl has the option of greed-
ily adding one species at a time so as to maximize the effective
species count, thus providing the researcher with a tool (1) for
discovering a high effective species count achievable with a
fixed number of genomes, or (2) for discovering a small set of
genomes that provides a desired effective species count. (Note
that, unlike with the work of Pardi & Goldman (2005) [5], we
have no proof that this greedy approach is always optimal, al-
though it has worked well in practice.)

If, instead, sequencing resources are not strictly limited and
can be garnered for good causes, motif efficiency may be the
more appropriate measure; a high motif efficiency demon-
strates that the genomic sequencing is worth the effort.

When there are multiple DNA sequence positions within a
genome posited to be subject to the same selective pressures,
the effective species counts are additive if the paralogous re-
lationships are believed to be distant. In particular, when the
effective species count for each of n positions is X , then hav-
ing data for all these sites is as good as having just one such
site with an effective species count of nX .

Caveats

The above analyses presuppose that all of the species in the
phylogenetic tree have DNA sequence positions that are or-
thologous with the relevant DNA sequence positions in a
species of interest, and that these orthologous positions can
be located and aligned. Margulies et al. (2005) finds evidence
that even in low-redundancy sequencing efforts, locating and
aligning orthologous sequences in mammals is not too diffi-
cult [8]. However, this is not always the case, and there is the
obvious tradeoff: the set of genomes sought for the compari-
son should be diverse, but only if those genomes are likely to
contain alignable, orthologous DNA sequence.

There is significant evidence that multiply occurring, func-

tional DNA elements, such as transcription factor binding
sites, are not necessarily subject to the same selection pres-
sures at each genomic location [15]. Thus, except when there
is evidence that the selection pressures are similar, the pool-
ing of data from corresponding element positions should be
done with care and the calculations here should be deemed
approximate.

Also note that, for a given foreground nucleotide equilib-
rium probability distribution, the effective species count and
the motif efficiency measure the error bar shrinkage relative to
the same foreground nucleotide equilibrium probability distri-
bution, on a degenerate phylogenetic tree that has all branch
lengths equal to zero. In this article, we have not quantified
the relative efficiency of characterizing one nucleotide equi-
librium probability distribution versus another. That is, we
have not discussed either Trace(V ) or Trace(V1) (from Equa-
tion 15) depends upon the nucleotide equilibrium probability
distribution. However, as a general rule, the less uniform the
nucleotide equilibrium probability distribution, the lower will
be any phylogenetic tree’s value of Trace(V ) and, hence, the
lower will be its root mean square estimator variance and the
smaller will be its error bar.

Conclusions

When the goal is to precisely characterize the nucleotide equi-
librium probability distribution for a multiply aligned DNA
sequence position, it is important to have genomic sequences
from a phylogenetically diverse set of species. We have
provided a mathematical formalism and an algorithmic ap-
proach for quantification of the obtainable accuracy, in terms
of an effective species count and a motif efficiency. We
have applied the algorithm to several test cases, and have
determined that large phylogenetic separation is most im-
portant when there are many genomes, and when nucleotide
equilibrium probability distributions of interest are domi-
nated by a pair of nucleotides. The algorithm is available
on the web at http://bayesweb.wadsworth.org/
cgi-bin/Effective.pl.
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