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Abstract

A new approach to tracking using geometric active contours is presented. The class of
objects to be tracked is assumed to be characterized by a probability distribution over some
variable, such as intensity, colour, or texture. The goal of the algorithm is to find the region
within the current image, such that the sample distribution of the interior of the region most
closely matches the model distribution. Several criteria for matching distributions are examined,
and the curve evolution equations are derived in each case. A particular flow is shown to
perform well in two experiments.

1 Introduction

This paper deals with the problem of tracking an object as it moves through a video-stream, based
on photometric rather than geometric considerations. Throughout, the term “photometric variable”
will be used loosely to mean a quantity such as intensity, colour, or texture; photometric variables
are distinguished from geometric variables, such as edges. With this in mind, the algorithm may
be explained in a straightforward fashion. The class of objects to be tracked is assumed to be
characterized by a probability distribution over some photometric variable. In each frame of the
video, the algorithm tries to find a region of the image whose interior generates a sample distribution
over the relevant variable which most closely matches the model distribution. The goal is to cast this
problem into the framework of geometric active contours, and to derive curve flows which optimize
the relevant matching criteria. The idea behind the algorithm is illustrated in figure 1.

Posing the tracking problem in this way has the advantage of dealing directly with two difficul-
ties that often confound such algorithms. First, the tracker does not rely on edges. Many trackers
use edge information exclusively; examples include [8, 2, 7]. The problems associated with using
edges are well-known. For instance, edge-detectors may be inaccurate, leading to the detection of
spurious edges; edges may not be detected when contrast between adjacent surfaces fades due to
illumination changes; and so on. However, even in the case of ideal edge-detection, such algorithms
would err in their approach, simply by failing to take into account the rich amounts of information
which are available in the photometric variables of the images. For example, much headway may
be made in the design of a lip-tracker by noticing that human lips tend to come in a small number
of colours. Indeed, colour-based methods are often used in special-purpose trackers (e.g [20, 12]
present colour-based face-trackers), mostly to excellent effect. The second problem which is di-
rectly addressed by this tracker is the difficulty of tracking successfully through cluttered scenes.



 

Figure 1: An illustration of the algorithm.On the left is a schematic representation of the model dis-
tribution, here taken to be a texture of horizontal lines. On the right is an image. The dashed line indicates
the initial position of the region; within this region, the empirical distribution only partly matches the model
distribution, as some of the background (a texture of vertical lines) is contained within the region. Thus, the
curve which is the region’s boundary will flow to the solid line; the resulting region maximizes the match
between empirical and model distributions.

By posing the problem as one of matching distributions, the tracker has robustness built in from the
start, which should allow for a reasonable chance of navigation through clutter.

A reasonable objection may be raised: why not incorporate both photometric and geometric
considerations? This, of course, is the eventual goal of the research programme, the first step of
which is presented in this paper. However, before attempting to include geometric concerns, it is
instructive to see how well a pure photometric tracker can do. A recent general-purpose photometric
tracker [6], to be discussed at greater length shortly, demonstrates the ability of such trackers to
succeed.

The active contour literature is vast, so no attempt will be made to review it comprehensively.
The field originated with the snake formulation of Kass, Witkin, and Terzopoulos [8], and many
papers in a similar vein followed [1, 17, 19]. The recent trend has been towards geometric curve
evolution [3, 9, 10, 4], and this paper will follow in that tradition. Many of these recent papers have
focused on the novel level-set approach to implementing geometric curve flows [14], which allows
for a stable numerical scheme, as well as for changes in topology to be handled without difficulty.

There are several recent papers in the active contour literature which bear closer relation to
the current paper. Chan and Vese [5] solve a restricted form of the Mumford-Shah segmentation
problem [11], assuming only two regions whose segments are piecewise constant. Yezziet al.
[22, 21] and Tsaiet al. [18] also solve a number of segmentation problems, including the full-
blown Mumford-Shah segmentation. Noteworthy as well is the paper of Paragios and Deriche
[15], which solves a segmentation problem using both boundary and region information. While
the approach taken in this paper may appear superficially similar to the current approach, a key
difference is the fact that the authors assume that one has access not only to information about
the object to be tracked, but about the background as well. In this sense, the algorithm developed
in [15] is truly a segmentation algorithm; it is generally impractical, within the context of all-
purpose trackers, to assume knowledge of the background, as the tracker must be able to work in as
many situations as possible. Paragios and Deriche have extended this work to the context of motion
estimation in [16]. All of the above mentioned papers are similar in spirit to the current paper, in that
they use information contained in the interior of the contours within the geometric curve evolution
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framework. However, the types of information used are quite different, as are the techniques used
in deriving the flows.

Finally, it is worth mentioning the work of Comaniciuet al. [6], which is in a sense most in
keeping with the present work. This algorithm attempts to follow a distribution by maximizing the
Bhattacharyya measure between a model distribution and an empirical distribution from the current
frame. However, this approach is not based on active contours, and one of its major drawbacks is
precisely related to this fact: the shape of the object is assumed to be an ellipse. Of course, many
objects are not even approximately elliptical (cf the flexing finger in section 4). The way in which
the ellipse translates from frame to frame is the focus of the paper, and is given by so-called “mean-
shift analysis”; however, the way in which the ellipse shrinks or enlarges is incorporated in anad
hocfashion. Nonetheless, this tracker performs very well experimentally, and does so in real time.

2 Theory

2.1 Notation

Let z be the photometric variable of interest. For example,z could be an intensity, colour vector,
or texture vector. The variablez lives in the spaceZ, which is assumed to be a Euclidean space of
dimensionn for somen ≥ 1. Thus, for intensities,n = 1; for coloursn = 3; and for texturesn is
the dimension of the output of the relevant filter bank. It is assumed that the class of objects to be
tracked is characterized by a model probability density over the variablez, specified byq(z).

The goal is to try to match a sample probability density within a region of the image to the
model density. Letx ∈ R2 specify the coordinates in the image plane, and letZ : R2 → Z be a
mapping from the image plane to the space of the photometric variable. Thus, ifZ is the space of
intensities, thenZ(x) is just a grayscale image; ifZ is the space of colours, thenZ(x) is a colour
image. Denote a region of the image plane byω ⊂ R2; let c = ∂ω be its boundary. We wish to
specifyp(z; ω), the sample probability density within the regionω. Let θ(z) be then-dimensional
Heaviside function, i.e.

θ(z) =

{

1 z1, . . . , zn ≥ 0,
0 otherwise.

Then we may write the cumulative distribution function defined inside the regionω as

F (z;ω) =

∫

ω θ(z − Z(x))dx
∫

ω dx

Thus, the probability densityp(z; ω) is given by

p(z; ω) =
∂nF (z; ω)
∂z1 . . . ∂zn

=

∫

ω δ(z − Z(x))dx
∫

ω dx
≡ N(z;ω)

A(ω)

whereδ(·) is the usualn-dimensional delta-function. Note thatA(ω) is the area of the regionω.

2.2 Density Matching Criteria

The goal is to find the regionω in the image plane such that the sample densityp(z; ω) most closely
matches the model densityq(z). There are a variety of criteria which can be used to compare the
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two densities. The first is the Kullback-Leibler distance:

K(ω) ≡ K(q(·), p(·;ω)) =
∫

q(z) log
(

q(z)
p(z; ω)

)

dz

The smaller the distance, the closer the two distributions are. (Note that the Kullback-Leibler dis-
tance is not truly a metric, as it is not symmetric in its argument.) A second choice is the Bhat-
tacharyya measure:

B(ω) ≡ B(p(·; ω), q(·)) =
∫

√

p(z;ω)q(z)dz

This measure varies between 0 and 1, where 0 indicates complete mismatch, and 1 indicates a
complete match. This is the matching measure used in [6].

A third criterion, called the “simple criterion” is now introduced. The reason for this is not any
analytical superiority over the measures already discussed; in fact, it is an inferior measure. Rather,
the issue is that although the flows for all three measures will be derived, the Kullback-Leibler and
Bhattacharyya flows are both quite time-consuming in terms of implementation, while the simple
flow is much speedier; this fact will be elaborated upon in section 3.

It would be nice if the criterion
∫

p(z)q(z)dz could be used. This criterion is formally similar to
the Bhattacharyya criterion, which makes it seem a plausible density-matching measure; it differs
from the Bhattacharyya criterion in the fact that it is missing the square root, which makes it easier
to the manipulate. However, the problem with using this measure is that solving

max
p(·)

∫

p(z)q(z)dz subject to
∫

p(z)dz = 1

doesnot yield p∗(z) = q(z), in contradistinction to the solutions of analogous optimizations of
the Kullback-Leibler and Bhattacharyya measures. Instead, it yields a solutionp∗(z) = δ(z − z0)
wherez0 = argmaxz∈Z q(z). In this sense, it is not a true density-matching measure. Similarly,
solution ofmaxω

∫

p(z; ω)q(z)dz will lead to ω collapsing to a tiny region around a pixelx with
valueZ(x) = z1, wherez1 = argmaxx∈imageq(Z(x)). This is an unreasonable situation; however,
noting thatp(z; ω) = N(z; ω)/A(ω), the following related problem is proposed instead:

max
ω

∫

N(z;ω)q(z)dz subject to A(ω) ≤ K

By thus “decoupling” the action ofN andA, we again achieve the objective of non-degenerate
distributions.

Note that without the constraint, the solution would be to have a regionω which encompasses
the entire image, since asω grows in area,N(z; ω) is non-decreasing for allz. By adding in the
constraint, this trivial solution is eliminated. Writing the Lagrangian for this problem yields the
“simple” matching criterion:

H(ω) =
∫

N(z; ω)q(z)dz − λA(ω)

where a minus sign has been inserted in front of the Lagrange multiplier for future convenience.
It will turn out (see section 3) that the precise value ofK will be irrelevant, and thatλ can be set
directly.
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2.3 A Proposition Concerning Variational Derivatives

The goal of this section is to establish the validity of the following proposition, which will be
useful in later computations. The proposition is given for simply-connected regions, but can be
generalized.

Proposition: Let ω be an elementary region ofR2, let c = ∂ω be its boundary, and letΓ(ω) =
∫

ω µ(x)dx, whereµ is C1. Additionally, let δΓ
δc be a 2-vector whoseith component is the variational

derivative δΓ
δci

, assuming a particular parameterization forc. Then there exists a parameterization of
c for which

δΓ
δc

∝ µ(c)n

wheren is the normal toc.

Proof of Proposition: First, let us convert the expression forΓ from an area integral to a line integral
using Green’s Theorem. Recall that Green’s Theorem states that ifP1 : ω → R andP2 : ω → R
areC1, then

∫

ω

(

∂P1

∂x1
− ∂P2

∂x2

)

dx1dx2 =
∫

∂ω
P2dx1 + P1dx2

Now, let

P1(x) =
1
2

∫ x1

−∞
µ(u1, x2)du1

and

P2(x) = −1
2

∫ x2

−∞
µ(x1, u2)du2

Sinceµ is C1, so areP1 andP2. It is easy to verify that

Γ =
∫

ω

(

∂P1

∂x1
− ∂P2

∂x2

)

dx1dx2

Thus, Green’s theorem gives that

Γ =
∫

∂ω
(P1dx2 + P2dx1)

=
∫ 1

0
[P1(c(s))c′2(s) + P2(c(s))c′1(s)]ds

=
∫ 1

0
Λ(c(s), c′(s))ds

where in the second line, the parameterization ofc = ∂ω has been substituted.
In order to calculateδΓδc , we may use results from the calculus of variations. In particular, it can

be shown [13] that
δΓ
δc

=
∂Λ
∂c

− d
ds

[

∂Λ
∂c′

]
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Now,

∂Λ
∂c1

− d
ds

[

∂Λ
∂c′1

]

=
∂P1

∂c1
c′2 +

∂P2

∂c1
c′1 −

d
ds

P2

=
∂P1

∂c1
c′2 +

∂P2

∂c1
c′1 −

[

∂P2

∂c1
c′1 +

∂P2

∂c2
c′2

]

=
(

∂P1

∂c1
− ∂P2

∂c2

)

c′2

But
∂P1

∂c1
=

1
2
µ(c(s)),

∂P2

∂c2
= −1

2
µ(c(s))

so that
∂Λ
∂c1

− d
ds

[

∂Λ
∂c′1

]

= µ(c(s))c′2(s)

Similarly, it may be shown that

∂Λ
∂c2

− d
ds

[

∂Λ
∂c′2

]

= −µ(c(s))c′1(s)

which finally leads to
[

δΓ/δc1
δΓ/δc2

]

= µ(c)
[

c′2
−c′1

]

Now, if the parameterization is in terms of normalized arc-length (i.e. arc-length divided by total
arc-length), then[c′2, −c1]T is proportional to the normaln, so that

δΓ
δc

∝ µ(c)n �

In the next three sections, we will use this result. In each case, we will use a gradient ascent or
descent approach to find an optimum ofΓ in terms ofc, i.e. a curve for whichδΓ/δc is 0. As a
result, we can safely ignore the positive constant of proportionality.

2.4 The Simple Flow

As we wish to maximizeH(ω), we may use gradientascent:

∂c
∂t

=
δH
δc
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However,

H(ω) =
∫

Z
N(z; ω)q(z)dz − λA(ω)

=
∫

Z

[∫

ω
δ(z − Z(x))dx

]

q(z)dz − λ
∫

ω
dx

=
∫

ω

[∫

Z
δ(z − Z(x))q(z)dz

]

dx− λ
∫

ω
dx

=
∫

ω
(q(Z(x))− λ)dx

Using the proposition, we have that

δH
δc

= (q(Z(c))− λ)n

Thus, the simple flow is
∂c
∂t

= (q(Z(c))− λ)n (1)

This equation is easy to understand. If the model density, evaluated at a particular pixel on the
boundary, is larger than the thresholdλ, then the curve expands to take in this pixel. In the context
of a lip-tracker, we may think of the curve as expanding to include reddish pixels (for which the
model density will be high), and contracting away from skin-coloured pixels in the neighbourhood
of the lips (for which the model density will be low).

2.5 The Kullback-Leibler Flow

Here we wish to minimizeK(ω), so that gradientdescentis appropriate:

∂c
∂t

= −δK
δc

Now,

K(ω) =
∫

Z
q(z) log

q(z)
p(z; ω)

dz

= η −
∫

Z
q(z) log p(z; ω)dz

whereη is the negative differential entropy of the model distribution, and can be ignored as it does
not depend ofω. Now, sincep(z; ω) = N(z; ω)/A(ω), we may write

K(ω) = log(A(ω))−
∫

Z
q(z) log(N(z;ω))dz

so that
δK
δc

=
1
A

δA
δc

−
∫

Z
q(z)

[

1
N(z;ω)

δN(z)
δc

]

dz
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Now, using the proposition,

A(ω) =
∫

ω
dx ⇒ δA

δc
= n

Similarly,

N(z; ω) =
∫

ω
δ(z − Z(x))dx ⇒ δN(z)

δc
= δ(z − Z(c))n

(Note: the proposition required thatµ beC1, whichδ(z − Z(x)) is clearly not. To get around this
problem, the following procedure may be used. Forδ(·), substitute aC∞ approximationδε(·), such
thatlimε→0 δε = δ. For example, one could use a unit-normalized Gaussian with varianceεI, where
I is then-dimensional identity matrix. After the calculation is completed, the limit may be taken.
Umder these assumptions, the results to be derived will not change.) Thus,

δK
δc

=
n
A
−

∫

Z
q(z)

[

δ(z − Z(c))n
∫

ω δ(z − Z(x))dx

]

dz

=
n
A
−

∫

Z

[

q(z)
N(z)

δ(z − Z(c))dz
]

n

=
n
A
− q(Z(c))

N(Z(c))
n

=
p(Z(c))− q(Z(c))

N(Z(c))
n

Thus, the Kullback-Leibler flow is given by

∂c
∂t

=
q(Z(c))− p(Z(c))

N(Z(c))
n (2)

The intuitive meaning of this equation is clear. If the sample density, evaluated at a particular
pixel on the boundary, is smaller than the model density, then the curve expands to take in this pixel.
This makes sense: by taking in the pixel, the sample density for that value ofz will increase, which
leads to a better match between the sample density and the model density. Put another way: a lip-
tracker based on the Kullback flow will expand to include a reddish pixel, and will contract away
from non-reddish pixels.

This equation seems more sophisticated than the simple flow, in that it explicitly takes into
account the sample densityp. However, as we will see the simple flow is much more practical in
terms of implementation, as it represents a pure differential equation; by contrast, the Kullback flow
represents an integro-differential equation, which is much slower to implement.

2.6 The Bhattacharyya Flow

As in the case of the simple flow, we wish to maximize the Bhattacharyya measure, and thus we use
gradientascent:

∂c
∂t

=
δB
δc
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The Bhattacharyya measure is given by

B(ω) =
∫

Z

√

p(z; ω)q(z)dz

=
∫

Z
q1/2(z)

N1/2(z; ω)
A1/2(ω)

dz

so that

δB
δc

=
∫

Z

q1/2(z)
A(ω)

[

A1/2(ω)
1
2
N−1/2(z;ω)

δN
δc

−N1/2(z; ω)
1
2
A−1/2(ω)

δA
δc

]

dz

=
n

2A(ω)

[

A1/2(ω)
∫

Z
q1/2(z)N−1/2(z;ω)δ(z − Z(c))dz

−A−1/2(ω)
∫

Z
q1/2(z)N1/2(z;ω)dz

]

=
n

2A(ω)

[

A1/2(ω)q1/2(Z(c))N−1/2(Z(c))

−
∫

Z
q1/2(z)p1/2(z;ω)dz

]

=
n

2A(ω)

[

q1/2(Z(c))
p1/2(Z(c))

−B(p, q)

]

In the foregoing, many of the arguments used in deriving the Kullback-Leibler flow have been
recycled. We finally have that the Bhattacharyya flow is given by

∂c
∂t

=
1

2A(ω)

[

q1/2(Z(c))
p1/2(Z(c))

−B(p, q)

]

n (3)

This equation has a similar intuitive understanding as the Kullback flow, except insofar as it is
somewhat more aggressive in expanding (sinceB(p, q) is less than 1, as long asp andq are not
equal). Like the Kullback flow, the Bhattacharyya flow is also an integro-differential equation.

3 Implementation

In both of the experiments of section 4, the simple flow is implemented. As has already been al-
luded to, the reasons for this choice are that the simple flow can operate much faster than either
the Kullback-Leibler flow or the Bhattacharyya flow. To see this, reexamine these two latter flows
(see equations (2) and (3)). Note that in both cases, the right side of the equation contains integral
quantities:p andN in the case of the Kullback-Leibler flow,p, B, andA in the case of the Bhat-
tacharyya flow. These quantities may only be evaluated by performing various integrations over the
entire regionω. Thus, technically both of these flows actually represent integro-differential equa-
tions. In any numerical scheme, the evaluation of these integrals at each time-step will be costly. By
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contrast, the simple flow (see equation (1)) is such that the right side of the equation depends only
on the position of the curve; it is a pure differential equation.

There are a variety of issues which arise in the implementation of the simple flow. First of all,
it is natural to do this implementation using the level-set method [14]. Aside from all of the well-
known advantages possessed by this framework, such as the ability to handle cusps, corners, and
changes in topology, this particular evolution equation is naturally a flow in the normal direction, a
necessary prerequisite for the application of this framework.

A second issue arises from the fact that images are actually discrete-valued, rather than continuous-
valued; there is therefore the question of how to best approximate the densities. As in [6], we use
histograms. In particular, we can learn the model densityq in a straightforward way by taking an
image (or multiple images) with an object (objects) drawn from the class of interest, and then find-
ing the histogram within the object. Empirically,q has small support, and is 0 in most (≈ 99%) of
bins.

A third issue concerns the choice of the single parameter associated with the simple flow, namely
λ. There is a simple way to chooseλ, based on the previous observation that the model densityq
has small support. In particular, if we choose

λ =
1
2

min
z∈Z:q(z)>0

q(z)

then any pointp on the curve such thatq(Z(p)) > 0 will flow outwards, and any point such that
q(Z(p)) = 0 will flow inwards. That is, in propagating the simple flow, we will try to maintain the
support of the model density.

 

Figure 2: The simple flow can lead to highly concave regions.The black outline represents the boundary
of the true location of the object; the gray region indicates the subset of this region whosez-values are in
the support of the model density. Without the addition of the min-curvature flow, the gray region would be
picked out by the simple flow.

In order to make the tracker run sufficiently quickly, we would like to choose the time-step∆t
to be as large as possible. Since∆t must satisfy a CFL condition, it is actually useful to make the
speed function more uniform, namelyF (c) = q(Z(c))− λ is replaced by

F (c) = sign(q(Z(c))− λ)

Finally, the following problem occurs. Due to inevitable changes in illumination, as time pro-
ceeds the density of the tracked objectp diverges from the model densityq. That is to say, the
region containing the tracked object ceases to be constituted entirely by pixels whosez-value is in
the support of the model densityq. As a result, the tendency is for the simple flow to lead to highly
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Figure 3: Tracking a walker.Left to right, and then down: (a) frame 5; (b) frame 38; (c) frame 75; (d)
frame 105; (e) frame 133; (f) frame 160.

concave regions; this is illustrated in figure 2. In order to overcome this problem, an extra curvature
term is added to eliminated some of the concavity, namely:

F (c) = sign(q(Z(c))− λ)− ε min{κ(c), 0}

This min-curvature flow has the effect of popping out highly concave regions, at the cost of intro-
ducing a second parameterε. However, this parameter has a useful physical interpretation. The
conditions under which a concave part of the curve is popped out are given by

F (c) > 0 ⇔ −1− εκ(c) > 0 ⇔ R(c) < ε

whereR(c) is the radius of curvature at the pointc on the curve. That is, all points with negative
curvature and with feature size (i.e. radius of curvature) of smaller thanε pixels will be removed. It
is useful to have this physical interpretation, as many objects do possess some concavity, but only
up to a certain scale; any concave region which is smaller than this scale must be an artifact of the
flow itself (rather than a property of the object), and is therefore removed. Thus, as long as the
rough scale of the allowed concavity is known, then the algorithm will work reasonably.

4 Results and Conclusions

The density tracker was run on two sequences: a walking individual, and a flexing and translating
finger. The scene of the walker presents a more cluttered background, while the finger tests the
ability of the tracker to follow the motion of a non-rigid object. Before examining the results of the
experiments, it is worth discussing the finger sequence in the context of other tracking algorithms.

The condensation algorithm has been shown to have difficulty in following the motion of the
finger in this sequence without a great deal of explicit modelling (e.g. modelling the finger as a
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Figure 4: Tracking a flexing finger.Left to right, and then down: (a) frame 1; (b) frame 6; (c) frame 12;
(d) frame 17; (e) frame 22; (f) frame 48.

robotic arm); for images, see [7]. The mean-shift tracker of Comaniciuet al. [6] also cannot track
the finger, as it is not designed to deal with flexible shapes; rather, the tracking area is always forced
to be an ellipse. It could possibly track an elliptical subsection of the finger; however, the goal of
tracking is generally to follow anentireobject as closely as possible. Finally, it is worth mentioning
the tracker of Paragios and Deriche [15]. As was discussed in section 1, no explicit comparison
can be made between this tracker and the current tracker, as the algorithm of Paragios and Deriche
requires information about the background in order to segment or track. We assume that no such
information is available, an assumption we feel is justified by the fact that the goal is to design a
general-purposetracker; such a tracker must be able to accomodate arbitrary backgrounds, without
any prior knowledge.

The following are the salient characteristics of the walker experiment.

• The sequence was of length 160 frames (= 5.3 seconds at 30 Hz).

• The photometric variablez was taken to be colour, specified in HSV coordinates, normalized
to run from 0 to 255.

• The model densityq was built as a histogram out of the walker’s face taken from a single
image (which was not part of the running sequence). The bins were taken to be8 × 8 × 8,
leading to(256/8)3 = 32,768 bins.

• The concavity parameterε was set at 20.

• Using a Pentium III machine operating at 933 MHz and an uncompiled MATLAB implemen-
tation, each frame required approximately 1 minute of running time.
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Figure 5: The density spills over.Left to right: (a) frame 97; (b) frame 98; (c) frame 101, in which the
density has ceased to spill over.

The results are shown in figure 3, which demonstrates the algorithm’s proficiency in following
the walker. One interesting artifact of the algorithm, more easily seen in a video than in still frames,
is jitter: despite finding the walker’s head correctly in all all frames, there is tendency for the precise
shape of the contour to change on a frame by frame basis. This is due to the fact that there are
no dynamical considerations incorporated into this algorithm. A second artifact may be labelled
“density spill-over,” and is illustrated in figure 5. Certain colours outside of the object of interest
may match those inside the object of interest. This occurs in the case of the walker, as he walks by
light coloured bookshelves and books, which match the colours of his face. This occurs in 3 frames
of the sequence (frames 96-98), and has no long-term effect, as is illustrated in the final frame of
figure 5.

The following are the salient characteristics of the finger experiment.

• The sequence was of length 270 frames (= 9.0 seconds at 30 Hz).

• The photometric variablez was taken to be colour, specified in RGB coordinates, normalized
to run from 0 to 255.

• The model densityq was built as a histogram out of an example finger taken from a single
image (which was not part of the running sequence). The bins were taken to be8 × 8 × 8,
leading to(256/8)3 = 32,768 bins.

• The concavity parameterε was set at 10.

• Using a Pentium III machine operating at 933 MHz and an uncompiled MATLAB implemen-
tation, each frame required approximately 2 minutes of running time.

The results are shown for flexing in figure 4, and translation in figure 6. Note that despite using
RGB colour coordinates (instead of the generally preferred HSV coordinates which were used in the
walker experiment), the algorithm performs quite well. Jitter is less evident in this sequence, and
no density spill-over occurs, as the background colours are clearly quite different from the finger’s
colour.

There are several directions for future research. First, we will investigate using the Kullback
and Bhattacharyya flows for tracking. In order to use these two flows, which are integro-differential
equations, methods for speeding up their implementations will have to be discovered. Second, more
complex measures ofz, the photometric variable, will be used. Possibilities include texture, or
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Figure 6: Tracking a translating finger.Left to right: (a) frame 227; (b) frame 237; (c) frame 257.

possibly a neighbourhood of texture vectors, in order to effectively capture a Markov Random Field
type of structure. Finally, and most importantly, attempts will be made to incorporate geometric
considerations into the algorithm. The experiments presented in this paper demonstrate the fact
that photometric variables, by themselves, can sometimes be enough to guide a tracker; however, in
order to increase both robustness and speed, the use of geometric variables are vital. The challenge
is to find a way of incorporating geometry within the framework presented in this paper.
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